If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+14z+30=0
a = 1; b = 14; c = +30;
Δ = b2-4ac
Δ = 142-4·1·30
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{19}}{2*1}=\frac{-14-2\sqrt{19}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{19}}{2*1}=\frac{-14+2\sqrt{19}}{2} $
| 5/2n-2=8+n | | z^2+-14z+30=0 | | 3=g/4-8 | | z^2+-14z+40=0 | | 5(4-a)-32=2a-6(2+5a) | | 84=b=2/5 | | 32=-5x-6(-x-7) | | 0=30t-4.9t^2 | | 61-(4x-11)=4(x+8)+x | | x+7+3x-18+x-9x=180 | | -3(2x+4)+2x=4 | | -4/3x-3=5 | | (2x-5)+(x+1)=50 | | 7z+28=7z-14 | | 4x-7(-2x-4)=172 | | 2(3x+3)-2(x+2)=8 | | 12x+39=51 | | 5y-8+y+28=8y+20-5y | | 20x+28=42 | | 3n-2=45 | | 5r+2=17r+5 | | x/2+×/3+×/4=26 | | 3x/2=x+2/3 | | -154=2x-7(5x-11) | | 23=7/9(6x-36)=9 | | x+x/3=18 | | 12(x+1/2)=24 | | 2((2x+1))-4)-24=3(x+4)-1 | | 9/x+1/5=2/5 | | 5x-3(x+14)=-20 | | 18x3=x+x | | 2(2x-2)-24=3(x+4)-1 |